Removal of Microcystin-LR by UF membranes and Activated Carbon

Jung Ju Lee, Harold W. Walker

Department of Civil and Environmental Engineering

and Geodetic Science

Characteristics of Microcystin-LR

- Cyclic heptapeptide structure
- Molecular weight: 995.18 (1000 Da)
- Size: 1.2-2.6 nm (Donati et al.,1994)
- pH_{PZC}: 2.09~2.19 (P. Gert-Jan De Maagd et al.,1999)
- Amphiphatic molecules containing hydrophilic functional groups and hydrophobic parts (Vesterkvist et al., 2003)

Effects of Microcystins on Humans

Exposure

- Microcystins The most frequently occurring cyanobacterial toxin released from *microcystis* (Lawton and Roberson, 1999)
- Major routes Recreational skin contact or consumption of contaminated waters (Codd et al., 1997)

Health Effects

- Inhibition of protein phosphatases 1, 2A (MacKintosh et al., 1990)
- Liver damage, Liver cancer tumor promoter (Carmichael, 1994)
- Affect the kidney and lungs (Hooser et al., 1990)
- Death LD_{50} : 50 µg/kg of body weight in mice (Dawson, 1998)

Standards

- USEPA candidate contaminant list
- WHO: Provisional guideline value for microcystin-LR of 1 μg/L

Treatment Processes for Removal of Microcystins

Processes	Advantages	Problems	
Coagulation/ Effective for		Ineffective in removing dissolved toxins	
Flucculation ¹	particulate cell	Possible cell lysis during treatment	
PAC/GAC ⁴	Effective (>80%)	High PAC doses needed for WHO guideline	
		DOC competition will reduce capacity and hasten breakthrough by saturated GAC filter	
Chlorination ^{1,2}	Effective (>80%)	Disinfection by-products, High dose needed	
		Inducing cell lysis and release of toxins	
Ozonation ³	Very effective	Insufficient during blooms or high DOM conc.	
Ozonation	(>98%), Fast	By-product due to incomplete oxidation	
Membranes ¹	>99% rejection of	UF/MF - Ineffective for dissolved toxins	
	NF or RO	NF/RO - fouling problems due to NOM	

1: Drikas et al., 2001, 2:Antoniou et al., 2005, 3:Hoeger et al., 2001 and Rositano et al., 2001,

4: Hart and Stott, 1993

PAC-Ultrafiltration Process Configuration

Advantages of PAC-UF System

PAC-UF System: The combination of PAC adsorption and UF membrane separation

- Ultrafiltration being utilized during design of plant upgrades and new plants
- PAC-UF emerging technology for the treatment of organic micropollutants in drinking water
- Effective for removing not only turbidity and bacteria cell but also dissolved organic compounds¹
- PAC dosage is lower compared with PAC adsorption process²
- NOM fouling reduced²

Study Objectives

- 1. Investigate the application of <u>ultrafiltration</u> <u>coupled with PAC adsorption</u> to remove microcystin-LR from drinking water
- 2. Examine the effect of natural organic matter (NOM) on the removal of microcystin-LR by PAC adsorption, UF, and PAC-UF system

Ultrafiltration coupled to PAC to remove microcystin-LR from drinking water

- 1. The effect of membrane characteristics
- 2. The effect of PAC dosage

Schematic of lab-scale PAC-UF system

Operating conditions

- pH: 7.0±0.2; Ionic strength: 5mM NaHCO₃; Temp.: 22°C~24°C
- Operating pressure: 30±10psi for 20KDa, 55±5psi for 5KDa
- Initial feed flow: 1.2×10⁻³ L/sec, Initial permeate flux: 3.89×10⁻⁵ m³/m²-sec

Characteristics of UF membranes

Membrane characteristics	CA 20KDa	PES 20KDa	PES 5KDa
Membrane surface material	Cellulose Acetate	Polyether- sulfone	Polyether- sulfone
MWCO ¹	20KDa	20KDa	5KDa
Contact angle ²	17.0	49.5	49.5
Zeta potential at pH 7	-9.31	-13.16	-12.99

- 1. Manufacturer's values (GE Osmonics)
- 2. Cho et. al, Desalination, 1998

Ultrafiltration: CA-20KDa

Ultrafiltration: PES-20KDa

Ultrafiltration: PES-5KDa

PAC-UF: 2ppm wood-based carbon and CA-20KDa membranes

PAC-UF: 2ppm wood-based carbon and PES-20KDa membranes

The effect of PAC dosage

Effect of SRFA on the removal of microcystin-LR

- 1. The effect of SRFA on membrane fouling during UF
- 2. The effect of SRFA on the removal of microcystin-LR by a PAC-UF system

Effect of SRFA during UF

Simultaneous Addition

Sequential Addition

Characteristics of Aquatic Humic Substances

Characteristics	Suwannee River Fulvic Acid	
Molecular weight	1000-1500 Da ¹ 2324 Da ²	
Acidic functional groups ³	Carboxyl group: 11.44 meq/g C Phenolic group: 2.91 meq/g C	
¹³ C NMR Estimates of Carbon Distribution ³	Aromatic: 24% Aliphatic: 33%	

- 1. Thruman, 1982 using small-angle X-ray scattering
- 2. Chin et al., 1994 using HPSEC technique
- 3. IHSS website

Changes in permeate flux and pore sizes

Membranes		Permeate flux (m³/m²-sec)	PEG rejection for 1000 Da (%)
CA-20KDa	Clean	3.87×10 ⁻⁵	_
	FA-fouled	3.87×10 ⁻⁵	_
PES-20KDa	Clean	3.87×10 ⁻⁵	0.4
	FA-fouled	3.35×10 ⁻⁵	3.6
PES-5KDa	Clean	3.87×10 ⁻⁵	7.7
	FA-fouled	3.23×10 ⁻⁵	9.8

Effect of SRFA on microcystin-LR removal by PAC-UF

SRFA reduces membrane adsorption capacity for microcystin

Rejection of microcystin increases when hydrophobic membranes fouled by NOM

Type of NOM has little effect on removal (PAC-UF; 5ppm PAC)

Conclusions

- UF-PAC effectively removes microcystin-LR from drinking water.
- Membrane pore size and composition influence removal
 - Hydrophobic membranes adsorb microcystin
 - Smaller pore size results in greater rejection
- Presence of natural organic matter hinders microcystin removal by PAC-UF, due primarily to competition for sorption sites on PAC

Acknowledgments

- The Ohio Sea Grant College program for financial support
- Chris Taylor and Brenda Snyder (Toledo Water Works) for help with collecting Lake Erie water
- Jason Cheng for BET analysis
- Shengnian Wang for Zeta potential analysis support